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Abstract: One-pot syntheses of 4'-demethylepipodophyllotoxin 7 and NPF 2 (4'-0- 
demethyl-4[~-(4"-fluoroanilino)-4-deoxypodophyllotoxin) are described from podophyllotoxin 3 
via a protocol using trimethylsilyl iodide in 72% and 52% overall yields, respectively. 
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Etoposide (VP 16-213) 1 is an important antineoplastic agent commonly used for the treatment of many 

human malignancies,  1 either alone or in combination chemotherapy. Etoposide's major side effect is 

neutropenia which is the dose limiting-effect. Topoisomerase II is the intracellular target for this drug that 

stabilizes covalent enzyme-DNA cleavage complexes at specific sites, thereby leading to DNA double strand 

breaks and cell death. 2 Recently, Osheroff e t  al.  3 reported a combination of kinetic and binding studies to gain 

further insight into the mechanism of action of 1. Consequently, a pathway of etoposide-induced DNA 

cleavage complex formation has been proposed, based on the resulting important data and the positional 

poison model 3 regarding the mechanistic basis of DNA cleavage enhancement by topoisomerase II poisons: 

the key pathway for the formation of the non covalent enzyme-drug-DNA ternary complex at specific sites 

which is in equilibrium with a covalent cleavage complex, proceeds through etoposide-topoisomerase II 

interactions. The shift of this equilibrium to the covalent complex is determined essentially by the ability of 1 

to inhibit DNA religation at those sequences. 
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Much of the recent synthetic work on podophyllotoxin 3 has been focused on the synthesis of C-4 

nonsugar-substituted analogues 4 which may show improved topoisomerase II inhibition and cytotoxicity. In 

particular, efforts in this area have resulted in the identification of 4'-O-demethyl-413-(4"-fluoroanilino)-4- 

deoxypodophyllotoxin (NPF) 2 by Lee and co-workers. 5 It was found 6 to be 10-fold more potent as inhibitor 

of topoisomerase II and 100-fold more cytotoxic against various human tumor cells and etoposide-KB 

resistant cells. This compound is a promising source of new anticancer agents. Lee's synthetic route to 2 

involves the following reactions from podophyllotoxin 3: one-pot C-4 epimerization/4'-O-demethylation 

(52%), then C-4 bromination (100% crude yield) via a modified Kuhn's method, 7 and nucleophilic 

displacement with 4-fluoroaniline (45%). The overall yield of the synthesis is 23%. C-40t substitution was 

also observed but in low yield. It is interesting to note that addition of Bu4N+I" in the last step resulted in better 

yield (72%) with much improved selectivity as reported by Indian authors 8. This result was ascribed to a 

dynamic kinetic resolution (DKR) process. 9 The origin of this highly stereoselective nucleophilic addition is 

the steric interaction of the nucleophile with the bulky E-ring and Bu4N+I -. 

As part of an ongoing medicinal chemistry program 10 in the podophyllotoxin area, we report an improved 

synthesis of 4'-demethylepipodophyllotoxin 7, precursor of etoposide 1, and the one-pot synthesis of NPF 2 

based upon the application of TMSI (trimethylsilyl iodide) to podophyllotoxin 3. 

Studies l l  have demonstrated the effectiveness of TMSI in attacking hindered methoxy groups in a 

regiospecific fashion. Furthermore, it is an excellent reagent for iodination of alcohols. 12 So far, to our 

knowledge, use of TMSI for both 4'-O-demethylation and C-4 epimerization has not been described for 

podophyllotoxin 3 itself. However, there has been one report 13 on the synthesis of structural analogues of the 

epipodophyllotoxins exemplifying the potential application of TMSI for the two reactions afore-mentioned. 

Therefore, we considered that TMSI could exhibit appropriate properties for transformation of 3 into the 

desired key intermediate 6. Fortunately, the iodination-demethylation sequence of 3 occurred to give 6 

without ~-lactone opening 14 detected (Scheme 1). 
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Thus, 4'-demethylepipodophyllotoxin 7 was prepared in 72% overall yield by treatment 15 of 

podophyllotoxin 3 with TMSI (3 equiv.) in methylene chloride at 0 °C for 6 h followed by weak basic 

hydrolysis (H20-acetone, then BaCO3). Additionally, epipodophyllotoxin 516 could be isolated by addition of 

both water and BaCO3 to quench the reaction mixture as soon as 3 disappeared as judged by TLC control, 

establishing the order of steps, i.e. 3 ->4 -> 6. On the other hand, NPF 2 was obtained in 52% overall 

yield 15 when 4-fluoroaniline (1.3 equiv.) was used instead of water in the presence of BaCO3 (2 equiv.) in 

THF at room temperature (Scheme 2). 
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Scheme 2 

In summary, the synthetic route outlined above provides a one-pot efficient method for the preparation of 

4'-demethylepipodophyllotoxin 7 and NPF 2. The extension of this methodology to the synthesis of 

413-alkylamino derivatives of podophyllotoxin is underway. 
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15. Typical procedure for the preparation of 7 and 2: 

Compound 7: 

To a solution of podophyllotoxin 3 (3.22 g, 7.77 mmol) in dry methylene chloride (100 mL) was added 

at 0 °C a solution of TMSI [3.3 mL, 23.3 mmol in methylene chloride (10 mL)]. The reaction mixture 

was stirred for 5 h at 0 °C then a mixture of H20/acetone (50 mL/50 mL) and BaCO3 (1.55 g, 7.85 

mmol) were added successively. After 30 min at 40 °C, the resultant mixture was diluted with methylene 

chloride (100 mL), then poured into 10% Na2S203 solution (500 mL). The organic layer was dried over 

MgSO4, concentrated in vacuo. Flash chromatography on silica gel with methylene chloride/acetone : 

92/8 as eluent gave 2.23 g of 7 (72%). 

Spectral data, specific rotation, and mp agree with those in the literature. 7 

Compound 2: 

To a solution of podophyllotoxin 3 (504 mg, 1.24 mmol) in dry methylene chloride (15 mL) was added 

at 0 °C a solution of TMSI [620 ~tL, 4.36 mmol in methylene chloride (2 mL)]. The reaction mixture was 

stirred for 6 h at 0 °C then concentrated in vacuo at room temperature to give a brown residue. This crude 

product was dissolved in dry THF (12 mL) then BaCO3 (490 mg, 2.48 mmol) and 4-fluoroaniline (141 

I.tL, 1.49 mmol) were added successively. The mixture was stirred overnight at room temperature, then 

filtered and concentrated under reduced pressure. Flash chromatography on silica gel with 

cyclohexane/ethyl acetate : 3/1 as eluent gave 322 mg of 2 (52%). 

Spectral data, specific rotation, and mp agree with those in the literature. 5 

16. Hartwell, J.L.; Schrecker, A.W. Fortschr. Chem. Org. Natn. 1958, 15, 83-166. 
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